Génération de nombres aléatoire selon des lois de probabilité usuelles

Nombres aléatoires & pseudo-aléatoires

Il existe plusieurs manières de générer des nombres dits « aléatoires » selon des lois connues

NB: Les programmes informatiques ne génèrent pas des nombres totalement aléatoire

On parle plutôt de nombres **pseudo-aléatoires**, qui semblent aléatoires mais sont en réalité générés selon un processus déterministe (qui dépend notamment d'un paramètre appelé « **graine** » - seed).

Génération d'un échantillon uniforme

Algorithme congruentiel linéaire : génèration d'un échantillon pseudo-aléatoire selon la loi uniforme sur [0;1] (Lehmer, 1948)

1 Générer une suite d'entiers y_n tel que :

$$y_{n+1} = (ay_n + b) \text{ mod. } m$$

2
$$x_{n+1} = \frac{y_{n+1}}{m-1}$$

Choisir a, b et m de manière à ce que y_n ait une période très longue et que $(x_1, ..., x_n)$ puisse être considéré comme iid

avec y_0 la graine

<u>Remarque</u>: $0 \le y_n \le m-1 \Rightarrow$ en pratique m très grand (ex. 2^{19937} , le défaut dans **Q** qui utilise l'algorithme Mersenne-Twister)

Dans la suite la génération de nombre pseudo-alétoires selon la loi uniforme sur [0;1] sera considérée comme fiable et utilisé par les différents algorithmes d'échantillonnage

Autres distributions usuelles

On s'appuie sur les **relations entre les différentes lois usuelles** en partant de $U_i \sim \mathcal{U}_{[0;1]}$

Génération de nombres aléatoire selon des lois de probabilité usuelles

Autres distributions usuelles

On s'appuie sur les **relations entre les différentes lois usuelles** en partant de $U_i \sim \mathcal{U}_{[0;1]}$

Loi binomiale Bin(n, p):

$$Y_i = \mathbb{1}_{U_i \le p} \sim \mathsf{Bernoulli}(p)$$

$$X = \sum_{i=1}^{n} Y_i \sim Bin(n, p)$$

Autres distributions usuelles

On s'appuie sur les **relations entre les différentes lois usuelles** en partant de $U_i \sim \mathcal{U}_{[0;1]}$

Loi binomiale Bin(n, p):

$$Y_i = \mathbbm{1}_{U_i \le p} \sim \mathsf{Bernoulli}(p)$$

 $X = \sum_{i=1}^{n} Y_i \sim Bin(n, p)$

Loi normale $\mathcal{N}(0,1)$ (algorithme de Box-Müller) :

 U_1 et U_2 sont 2 variables uniformes [0;1] indépendantes

$$Y_1 = \sqrt{-2\log U_1} \cos(2\pi U_2)$$
$$Y_2 = \sqrt{-2\log U_1} \sin(2\pi U_2)$$

 \Rightarrow $Y_1 \& Y_2$ sont indépendantes et suivent chacune la loi $\mathcal{N}(0,1)$

Méthode par inversion

<u>Définition</u>: Pour une fonction F définie sur \mathbb{R} , on définie son inverse généralisée par : $F^{-1}(u) = \inf\{x \text{ tq } F(x) > u\}$

Méthode par inversion

<u>Définition</u>: Pour une fonction F définie sur \mathbb{R} , on définie son inverse généralisée par : $F^{-1}(u) = \inf\{x \text{ tq } F(x) > u\}$

- $\underline{ extbf{\textit{Propriét\'e}}}$: Soit F la fonction de répartition d'une distribution de probabilité
 - U une variable aléatoire suivant une loi uniforme sur [0;1]

Alors $F^{-1}(U)$ définie une variable aléatoire ayant pour fonction de répartition F.

- Si f 1 on connaît la fonction de répartition F de la loi selon laquelle simuler
 - 2 on est capable d'inverser F
- ⇒ on peut alors générer un échantillon suivant cette loi à partir d'un échantillon uniforme sur [0;1]

Méthode par inversion : illustration

Exemple : On veut générer un échantillon suivant la loi exponentielle de paramètre λ

Méthode par inversion : illustration

Exemple : On veut générer un échantillon suivant la loi exponentielle de paramètre λ

- la densité de la loi exponentielle est $f(x) = \lambda \exp(-\lambda x)$
- la fonction de répartition (son intégrale) est donc $F(x) = 1 \exp(-\lambda x)$

Posons
$$F(x) = u$$

On obtient alors x = ...