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POINTS OF SIGNIFICANCE

Markov models—Markov chains
You can look back there to explain things, but the explanation disappears. You’ll never find it there. Things are not 
explained by the past. They’re explained by what happens now. 
–Alan Watts

Jasleen K. Grewal, Martin Krzywinski and Naomi Altman

To model biological systems that 
undergo change, it is not strictly 
necessary to know the details  

of the underlying mechanisms. Instead,  
we can model change as a series of 
transitions between states. Each transition 
is assigned a probability that defines  
the chance of the system changing  
from one state to another. Together  
with the states, these transition 
probabilities define a stochastic model 
with the Markov property: transition 
probabilities depend on only the current 
state—the future can be considered 
independently of the past if the  
present is known.

The simplest model with the Markov 
property is a Markov chain. Consider a 
single cell that can transition among three 
states: growth (G), mitosis (M) and arrest 
(A). At any given time, the cell’s state can be 
represented by a random variable X, which 
has a value of G, M or A with probability  
pG, pM or pA, respectively. A Markov chain  
of this system is a sequence (X0, X1, X2, . . .),  
where Xi is the vector of probabilities of 
finding the system in each state at time  
step i, and the probability of transitioning 
from Xi to Xi+1 depends only on the 
observed value (G, M or A) of Xi.  
A realization (observation) of the chain  
is the set of sequentially observed states  
(for example, G, M, G, G, . . .).

Let’s start with a two-state (G, M) Markov 
chain, which will be discrete-time (time steps 
are equal) and time-homogeneous (transition 
probabilities are fixed). At any given time 
step, the cell in G can undergo mitosis  
(G to M) with a probability pGM = 0.2 or 
remain in G (pGG = 1 – 0.2 = 0.8). We set  
pGG > 0 to allow the cell to stay in G for 
multiple steps. We also set pMG = 1 so that 
mitosis will take a single time step—once in 
M, the cell always returns to G in the next 
step (Fig. 1a). These probabilities define a  
2 × 2 transition probability matrix, T, whose 
element Tij (ith row, jth column) is the chance 
of moving from state i to state j. Because the 
values in the matrix are probabilities, the 
sum of each row (the probability of being in a 
given state) must be 1.

If our cell starts in G, the initial state 
probability vector is X0 = [pG = 1, pM = 0]. 
We can obtain subsequent probabilities 
of states by multiplying the current 
state probability vector by the transition 
probability matrix: the second state vector  
is X1 = X0T = [0.8, 0.2], and the third is  
X2 = X1T = X0T2 = [0.84, 0.16]. Each 
transition is a multiplication by T, and we 
obtain the system after n transitions by 
multiplying by Tn. The elements (Tn)ij are  
the probabilities of starting in state i and 
ending in state j after n transitions.

To see what happens in the long run, 
we calculate Tn in the limit n → ∞. For 
our two-state system, Tn converges very 
quickly (this rate depends on T), and, to 
two decimal places, T4 (Fig. 1a) is a good 
approximation of long-term behavior. Each 
row i of this matrix gives the probabilities  
of being in each state after infinitely many 
time steps, having started in i. These 
probabilities are the ‘limit’ of each state and 
together are called the limiting distribution. 
Our system always converges to [0.83, 0.17], 
which tells us that, after a long time, we have 
a 17% chance of finding the cell in M.  
This is the case regardless of how we define 
our initial state, as both rows in T4 are the 

same. Here, the limiting distribution also 
defines the steady-state behavior of the 
chain, known as its stationary distribution. 
Once the stationary distribution is reached, 
it is unaltered by further transitions.

For irreducible and aperiodic Markov 
chains, limiting distributions and stationary 
distributions have unique solutions.  
They are also equivalent to each other in such 
chains. In these cases, like in our  
two-state example, the limiting distribution 
is independent of the initial state, so the rows 
of Tn are identical. In an irreducible chain, 
all states ‘communicate’ with one another—a 
given state can be reached from any other 
state via zero or more transitions. In contrast, 
an aperiodic chain does not return to a given 
state in a fixed number of transitions—it 
may take any number of steps to go from, for 
example, G to M and then back to G.

Periodic chains may have a stationary 
distribution but lack a limiting distribution. 
Such a chain remains in the stationary 
distribution if it starts there, but otherwise 
it may never reach it. For example, with 
pGM = pMG = 1, a cell that starts in G will 
deterministically flip states with each step.  
A stationary distribution exists—[0.5, 0.5]— 
but Tn does not converge. In reducible 
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Fig. 1 | state transition models, transition matrices t, and the number of transitions required to 
approximate the steady-state limiting distributions, tn (n→∞), to the displayed number of decimal 
places. a, A two-state model in which a cell in the growth phase (G) can undergo mitosis (M) with a 
probability pGM = 0.2. b, A three-state model in which the cell may enter temporary arrest (A) from M 
with a probability of pMA = 0.2 but will return to G with a probability pAG = 0.1. c, A three-state absorption 
model in which the cell remains in arrest forever. The number of time steps spent in a state before 
absorption is given by the fundamental matrix, Fn = (I – Q)–1, where Q is the highlighted submatrix.
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chains, limiting distributions (when they 
exist) are dependent on the initial state. For 
example, when pGG = pMM = 1, there are two 
stationary distributions, [1,0] and [0,1], for 
the G and M initial states, respectively.

Now let’s extend our model and add the 
arrest state A, which the cell can enter from 
M with pMA = 0.2 (otherwise it goes back 
to G). The arrest will be temporary—the 
cell can return from A to G with a low 
probability (pAG = 0.1) (Fig. 1b). Because 
this chain is also irreducible and aperiodic, 
Tn converges, though more slowly than in 
the previous example. Now the limiting 
distribution is [0.625, 0.125, 0.25] and the 
chance of finding the cell in M after a long 
time is 12.5%.

We can make our chain reducible by 
making the arrest state permanent, for 
example, with a drug that inhibits mitosis 
(Fig. 1c). Now, because all transition 
probabilities from A are 0 (pAG = pAM = 0), 
we cannot reach G or M from A. Arrest is 
now an absorbing state, and the chain is 
absorbing, reducible and aperiodic. The 
longer this system evolves, the higher the 
chance of finding the cell in the absorbing 
state and the lower the probability of finding 
it in G or M. Regardless of the initial state, 
pG < 0.1 and pM < 0.1 after 63 transitions, 
and after 153 transitions the system has 
converged to within two decimal places of 
the limiting distribution [0, 0, 1] (Fig. 1c).

Does the rate at which the cell enters 
arrest depend on the initial state? Does 

the cell spend more time in G or M before 
it goes into arrest? These questions are 
addressed by the fundamental matrix,  
Fn = (I – Q)–1, where Q is a sub-matrix of 
T representing the transition probabilities 
within nonabsorbing states (Fig. 1c),  
and I is the identity matrix. Summing the 
values along each row gives us the expected 
number of time steps before absorption. 
If we start in G, we expect absorption on 
average after 30 steps. Of these, 25 will be 
spent in G and 5 in M. If we start in M,  
the absorption time decreases to 25 steps  
(20 in G and 5 in M).

The time to absorption from G is five 
steps longer than that from M because  
(a) the average length of time initially 
spent in G is five steps and (b) once the 
chain transitions to M, it is statistically 
identical to the chain that initially 
started in M, because future states are 
independent of past states. To explain the 
value of 5, consider a biased coin with the 
probability of obtaining a head pH = 0.2. 
If we treat H as the absorbing state, the 
expected number of flips to the first head 
is the absorption time, calculated as the 
average of the corresponding geometric 
distribution, 1/pH = 5. Moreover, for this 
coin, Q = pT = 0.8 and Fn = (1 – Q)–1 = 5, 
which motivates the matrix form for Q.

To see this explicitly, let’s follow the  
evolution of 2,500 absorbing chains starting 
in G, with pMA = 0.2 (Fig. 2a). Over time,  
the fraction of cells in A steadily increases, 

with a simulated mean time to arrest  
of 30.9 time steps, close to the expected  
30 from Fn. Consider now 2,500 chains  
with the same T but with initial state M. 
Because pMA = 0.2, we expect 20% of those 
chains to arrest in the second step and  
80% to transition to G. Furthermore, the 
Markov property tells us that the 80% 
of chains in G will evolve statistically 
identically to those simulated as starting in 
G. We show this in Fig. 2a by offsetting the 
position of the chains that start in M by 5.  
In fact, if we prepend these chains with  
the length of time that our cell initially spent 
in G in the first simulation, we re-create 
chains with the same statistical properties  
as those that started in G.

If we increase the absorption probability 
to pMA = 0.4, the values in our fundamental 
matrix will be halved, and so will the 
average time to arrest: 15 if we start in G, 
and 10 if in M (Fig. 2b). As before, the 
chains that successfully return to G from 
the initial state M (60%) will be statistically 
identical from that point to those that 
started in G.

Markov chains can be generalized to 
cases of short-term dependency, taking  
into account recent past states in the chain. 
For example, the third base in a codon  
can be probabilistically predicted on the 
basis of the first two bases by a second-order 
Markov chain, which ‘remembers’ the  
last two states1.

Discrete-time Markov chains are 
intuitive, are easy to interpret and have real-
life applications in various areas, including 
weather prediction, finance and biology. 
They can capture dependencies within a 
system and reveal interesting long-term 
behavior. Markov models in which states 
are not directly observable are called hidden 
Markov models and will be the subject of 
our next column. ❐
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Fig. 2 | effect of the initial state (G, M) on the state evolution of 5,000 Markov chains with 20% and 
40% chances of arrest. a, The top stacked bar plot shows the state distribution across 60 time steps for 
2,500 chains that start in G. The first set of horizontal strips shows arbitrary chains selected from chains 
with length in the 5th percentile (shortest) to 95th percentile (longest). The vertical black line shows  
the simulated average absorption time, nG*A = 30.9. Results for 2,500 chains that initialize in M are 
shown below, offset by the average number of steps the G chains initially spend in G. The absorption 
time for M chains differs by this offset (25.7 ≈ 30.9 – 5), and their state distribution after the first  
step (region outlined by a black rectangle) is identical to that for the chains that started in G. b,  
Same as a, but with a 40% chance of arrest.
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